Role of corticotrophin-releasing factor in effects of leptin on sympathetic nerve activity and arterial pressure.
نویسندگان
چکیده
Leptin and corticotrophin-releasing factor increase sympathetic nervous activity to interscapular brown adipose tissue, kidneys, and adrenal glands. Leptin is known to increase hypothalamic corticotrophin-releasing factor. In this study, we tested the hypothesis that leptin-dependent increases in sympathetic nervous activity are mediated through increases in central nervous system corticotrophin-releasing factor activity. We examined the effects of intracerebroventricular administration of corticotrophin-releasing factor and intravenous leptin on sympathetic nervous activity to interscapular brown adipose tissue through multifiber neurography in anesthetized Sprague-Dawley rats pretreated with intracerebroventricular alpha-helical corticotrophin-releasing factor(9-41) (corticotrophin-releasing factor receptor antagonist) or vehicle. Centrally administered corticotrophin-releasing factor substantially increased interscapular brown adipose tissue sympathetic nervous activity. The responses to corticotrophin-releasing factor were substantially attenuated in animals pretreated with alpha-helical corticotrophin-releasing factor(9-41). Leptin-dependent increases in interscapular brown adipose tissue sympathetic nervous activity were significantly inhibited by pretreatment with alpha-helical corticotrophin-releasing factor(9-41). Interestingly, leptin also significantly increased arterial pressure over 6 hours, but this pressor action was not attenuated by the corticotrophin-releasing factor receptor antagonist. These results suggest that corticotrophin-releasing factor may mediate the sympathoexcitatory effect of leptin on thermogenic tissue without altering its cardiovascular actions.
منابع مشابه
Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla
Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...
متن کاملTonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla
To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...
متن کاملTonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla
To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...
متن کاملRole of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin.
Central melanocortin signaling plays an important role in regulation of energy homeostasis by leptin and insulin. We investigated the interaction between leptin, insulin, and melanocortin-4 receptors (MC-4Rs) in the control of renal sympathetic nerve activity (RSNA) in mice. We compared the effects of intracerebroventricular (ICV) administration of leptin, insulin, MC-3/4R agonist (MTII), and c...
متن کاملCardiovascular and sympathetic effects of disrupting tyrosine 985 of the leptin receptor.
Leptin acts in the brain to regulate food intake and energy expenditure. Leptin also increases renal sympathetic nerve activity and arterial pressure. The divergent signaling capacities of the leptin receptor (ObRb) mediate the stimulation of various intracellular pathways that are important for leptin control of physiological processes. We evaluated the cardiovascular and sympathetic consequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 38 3 شماره
صفحات -
تاریخ انتشار 2001